
Technical Appendix

Algorithms and Parameters1

We present the details of the preprocessing functions used2

in the GYM. Each method is modified or upgrade based on3

proposed methods with the aid of randomness. The hyper-4

parameters we adopted in the preprocessing procedures for5

both the intensive preprocessing and the lightweight prepro-6

cessing are listed in Table 1.7

Notation Meaning Value
δ distortion limit of the Optical Distortion 0.5
γ1 Gamma Compression’s gamma value 0.6
γ2 Gamma Extension’s gamma value 2.6
σ scale limit of the RSDP 1.3
T translation limit of the SAT 0.16
S sacaling limit of the SAT 0.16
R rotation limit of the SAT 4

Table 1: Hyperparameters’ settings during the Preprocessing.

Optical Distortion8

Different from (Liu, Malcolm, and Xu 2010), the Optical9

Distortion we upgraded and utilized in the GYM is based10

on assigning a random distortion value chosen from a uni-11

form distribution of the distortion limit. This random process12

can distort each sample on a different scale for a different13

time, thus better help the infected model better adapt to the14

remapping distortions. The details of the Random Pincush-15

ion Distortion we proposed and improved in the GYM are16

explained in Algorithm 1. The random pincushion distortion17

can be interpreted into three phases. For starters, we acquire18

a random distortion value, δk, from a uniform distribution19

between −δ to 0. Using this randomly sampled δk, we can20

acquire two pincushion maps for horizontal and vertical in-21

dexes, respectively. Finally, by broadcasting those two maps22

for each pixel, we can output the result. During the experi-23

ment, we set the δ as 0.5 based on experimental analysis.24

Gamma Compression and Extension25

Inspired by the previous work (Kumari, Thomas, and Sahoo26

2014), the Gamma Compression and the Gamma Extension27

are fine-tuned and used in the median filters set to merging28

pixels’ values and enhance the effects of the median filters.29

The Gamma value of the Gamma Compression procedure is30

ALGORITHM 1: Random Pincushion Distortion
Input: original image I ∈ Rh×w
Output: distorted image I ′ ∈ Rh×w
Parameters: distortion limit δ;

/* 1.Acquire distortion parameter δk */
1 δk ∼ U(−δ, 0);
/* 2.Acquire Distortion Maps */

2 cx = b(w/2)c, cy = b(h/2)c;
3 Pset = {(m,n) ∈ {(0, ..., w)× (0, ..., h)}};
4 for (u, v) in Pset\{(m,n)} do
5 mapx(u, v) = ((u− cx)× (1 + k)) + cx;
6 mapy(u, v) = ((v − cy)× (1 + k)) + cy;
7 end
/* 3.Remapping I to I ′ */

8 for (u, v) in Pset\{(m,n)} do
9 I ′(u, v) = I(mapx(u, v),mapy(u, v));

10 end
11 return I ′;

set to 0.6, which acquires a Look-Up Table shown in the mid- 31

dle of Figure 1. As demonstrated that larger values from the 32

original pixels range (the left part of 1) are mapping with a 33

larger value close to the maximum value (255), thus helps 34

larger values to bend in. As a result, the median filter can 35

work more efficiently to smoothen pixels of low value. Vice 36

versa, with a Gamma value set to 2.6, we can use the help 37

of the Gamma Extension to merge small values, thus bet- 38

ter smoothen large pixels. We summarize the Gamma Com- 39

pression and Extension as a single function shown in Algo- 40

rithm 2. As demonstrated, the Gamma Transformation we 41

used here in the experiment can be interpreted as two func- 42

tional parts. First, we acquire the LUT based on the Gamma 43

value, γ. Then, the output image can be obtained by using the 44

value of the corresponding position in the LUT to replace the 45

original pixel value. The function with a Gamma value larger 46

than 1 conducts extension, and a Gamma value smaller than 1 47

performs compression. We chose 0.6 and 2.6 as the Gamma 48

values for the compression and extension based on experi- 49

mental results, as they can achieve better results during the 50

inference after GYM fine-tuning. 51



Figure 1: Different Gamma Look-Up Tables (LUTs) used in the Median Filters set: The left is the original pixel values, ranging
from 0 to 255; the Gamma Compression uses a Gamma value of 0.6, which lead to the LUT shown in the middle; the Gamma
Extention uses a Gamma value of 2.6, which lead the left LUT.

ALGORITHM 2: Gamma Transformation
Input: original image I ∈ Rh×w
Output: transformed image I ′ ∈ Rh×w
Parameters: Gamma Value γ;

/* 1.Acquire LUT */
1 T = range(0 : 255)16×16;
2 LUT = (T/255)γ × 255;
/* 2.Assigning New Values */

3 Pset = {(m,n) ∈ {(0, ..., w)× (0, ..., h)}};
4 for (u, v) in Pset\{(m,n)} do
5 (x, y) = where(T == I(u, v));
6 I ′(u, v) = LUT (x, y);
7 end
8 return I ′;

Random Scale Down with Padding (RSDP)52

We proposed Random Scale Down with Padding (RSDP) as53

a tool to help the infected model to better adapt to affine54

transformations. The details of the proposed preprocessing55

function are explained in 3. The σ we used in the experi-56

ment is set to 1.3 to downscale the input image in a range57

of range (0.8,1). The whole process of the proposed RSDP58

can be interpreted as three functional parts. First, the algo-59

rithm acquires random parameters for the scaling and the60

padding. This includes after-padding size, Lenmax; resizing61

size, Len; the number of pixels to pad to reach the after-62

padding size, lrem; and padding coordinates, (x1, x2) and63

(y1, y2). Padding the resized image using the padding coor-64

dinates to (Lenmax, Lenmax), we can acquire a black canvas65

patched with the resized original input. With resizing the im-66

age back to the original size, we can acquire the final result.67

Based on the experiment, we found that resizing the image68

from 0.8 to 1 times smaller can best help the infected model69

adapts to the affine transformation.70

ALGORITHM 3: RSDP
Input: original image I ∈ Rl×l
Output: distorted image I ′ ∈ Rl×l
Parameters: scale limit σ;

/* 1.Acquire random parameter */
1 Lenmax = b(l × σ)c;
2 Len ∼ bU(l, Lenmax)c;
3 lrem = Lenmax − Len;
4 x1 ∼ bU(0, lrem)c, y1 ∼ bU(0, lrem)c;
5 x2 = lrem − x1, y2 = lrem − y1;
/* 2.Padding to Lenmax */

6 I ′ = reshape(I) s.t. I ′ ∈ RLen×Len;
7 I ′ = pad(I ′, ((x1, x2), (y1, y2)), value = 0)

s.t. I ′ ∈ RLenmax×Lenmax ;
/* 3.Reshape I ′ to the size of I */

8 I ′ = reshape(I ′) s.t. I ′ ∈ Rl×l;
9 return I ′;

Stochastic Affine Transformation 71

We adopt the Stochastic Affine Transformation (SAT) (Zeng 72

et al. 2020) to further help the infected model adapt the affine 73

transformation in GYM Fine-tuning and invalidate potential 74

triggers during inference. The details of the SAT are ex- 75

plained as follows in the Algorithm 4. We adopt the same 76

settings from (Zeng et al. 2020), T , 0.16, S, 0.16, and R, 4. 77

The whole process of the SAT can be functionally interpreted 78

as three parts, namely translation, rotation, and scaling. 79

Attacking and Preprocessing Results 80

The attacking and preprocessing results over patched sam- 81

ples are shown in Figure 2,3,and 4. Please noted that the 82

intensive preprocessed patched data are not used during the 83

GYM fine-tuning procedure. We only adopt the intensive pre- 84

processed patched data during the inference before and after 85

the fine-tuning (Inference(I)). 86



Figure 2: The attacking and preprocessing results over the Cifat10 dataset.

ALGORITHM 4: SAT
Input: original image I ∈ Rh×w

Output: transformed image I′ ∈ Rh×w

Parameters: translation limit T ; scaling limit S, rotation limitR.

1 I
′

= Oh×w ;
/* 1.Translation */

2 δx ∼ U(−T, T );
3 δy ∼ U(−T, T );
4 ∆x = δx × w;
5 ∆y = δy × h;
6 if (x+ ∆x ∈ (0, w)) ∧ (y + ∆y ∈ (0, h)) then
7 I′(x, y) = I(x+ ∆x, y + ∆y);
8 end
/* 2.Rotation */

9 δr ∼ U(−R,R);
10 ∆r = δr × π/180;
11 for (xi, yj) in {(x, y)|x ∈ (0, w), y ∈ (0, h)} do
12 x

′
i = −(xi − bw/2c)× sin(∆r) + (yj − bh/2c)× cos(∆r);

13 y
′
j = (xi − bw/2c)× cos(∆r) + (yj − bh/2c)× sin(∆r);

14 x
′
i =

⌊
x
′
i + bw/2c

⌋
;

15 y
′
j =

⌊
y
′
j + bh/2c

⌋
;

16 if (x
′
i ∈ (0, w)) ∧ (y

′
j ∈ (0, h)) then

17 I′(xi, yj) = I(x
′
i, y
′
j);

18 end
19 end

/* 3.Scaling */

20 δs ∼ U(1− S, 1 + S);
21 hnew = δs × h;
22 wnew = δs × w;
23 I′ = reshape(I′, (hnew, wnew));
24 if δs > 1 then
25 I′(x, y) = cropping(I′, (h,w));
26 end
27 if δs < 1 then
28 I′(x, y) = padding(I′, (h,w));
29 end
30 return I′;

Figure 3: The attacking and preprocessing results over the
GTSRB dataset.

Figure 4: The attacking and preprocessing results over the
PubFig dataset.

As shown in each figure, the triggers in each sample pre- 87

processed by the intensive preprocess become hard to recog- 88

nize by human eyes. Thus, it is intuitive that such intensive 89

preprocessing can help the infected models revise their deci- 90

sion boundaries to encompass those patch data to their orig- 91

inal classes. With the decision boundary being shifted with 92

the intensive preprocessed data, the lightweight preprocess- 93

ing can help the fine-tuned model achieve a more accurate 94

result, with less preprocessing procedures being adopted. 95



Please noted that the lightweight preprocessing is actually96

proposed based on the intensive preprocessing, which sim-97

plified some steps in the intensive preprocessing. The inten-98

sive preprocessing is developed from a functional perspec-99

tive to help the infected model better and faster adapt to the100

lightweight preprocessing, thus achieving high accuracy for101

an efficient deployment.102

References103

Kumari, A.; Thomas, P. J.; and Sahoo, S. 2014. Single image104

fog removal using gamma transformation and median filter-105

ing. In 2014 annual IEEE India conference (INDICON), 1–5.106

IEEE.107

Liu, T.; Malcolm, A.; and Xu, J. 2010. Pincushion distor-108

tion correction in x-ray imaging with an image intensifier. In109

Fourth International Conference on Experimental Mechan-110

ics, volume 7522, 75223T. International Society for Optics111

and Photonics.112

Zeng, Y.; Qiu, H.; Memmi, G.; and Qiu, M. 2020. A113

Data Augmentation-based Defense Method Against Ad-114

versarial Attacks in Neural Networks. arXiv preprint115

arXiv:2007.15290 .116


