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Abstract

Public resources and services (e.g., datasets, training plat-1

forms, pre-trained models) have been widely adopted to ease2

the development of deep learning-based applications. How-3

ever, if the third-party providers are untrusted, they can in-4

ject poisoned samples into the datasets or embed backdoors in5

those models. Such an integrity breach can cause severe con-6

sequences, especially in safety- and security-critical applica-7

tions. Various backdoor attack techniques have been proposed8

for higher effectiveness and stealthiness. Unfortunately, exist-9

ing defense solutions are not practical to thwart those attacks10

in a comprehensive way.11

In this paper, we propose GYM, a novel and effective de-12

fense solution to defeat different types of backdoor attacks13

and enhance DL models’ robustness. The key innovations of14

our approach are two preprocessing functions: (1) an intensive15

function is used to transform clean images for fine-tuning of16

the infected model. This can invalidate the effects of embed-17

ded backdoors; (2) a lightweight function is adopted to inval-18

idate triggers during inference. The combination of these two19

functions in two stages can achieve reliable and comprehen-20

sive protection of backdoored models. Extensive experiments21

show that our solution can effectively mitigate six different22

kinds of backdoor attacks and outperform four state-of-the-art23

defense solutions for various DNN models and datasets.24

Introduction25

The past several years have witnessed the rapid develop-26

ment of Deep Learning (DL) technology. Various DL mod-27

els today are widely adopted in many scenarios, e.g., image28

classification (Chan et al. 2015), speech recognition (Deng29

and Platt 2014), natural language processing (Collobert and30

Weston 2008). These applications significantly enhance the31

quality of life and work efficiency. With the increased com-32

plexity of Artificial Intelligence tasks, more sophisticated DL33

models need to be trained, which require large-scale datasets34

and a huge amount of computing resources.35

To reduce the training cost and effort, it is now common36

for developers to leverage third-party resources and services37

for efficient model training. Developers can download state-38

of-the-art models from the public model zoos or purchase39

them from model vendors. They can also download or pur-40

chase valuable datasets from third parties and train the mod-41

els by themselves. A more convenient way is to utilize pub-42

lic cloud services (e.g., Amazon SageMaker (Liberty et al.43

2020), GoogleVision AI (Hosseini, Xiao, and Poovendran 44

2017), Microsoft Computer Vision (Han et al. 2013), etc.), 45

which can automatically deploy the training environment and 46

allocate hardware resources based on users’ demands. 47

However, new security threats are introduced to DNN 48

models when the third party is not trusted. One of the most 49

severe threats is the DNN backdoor attacks (Li et al. 2020a): 50

the adversary injects a backdoor into the victim model, caus- 51

ing it to behave normally over benign samples, but predict 52

the samples with an attacker-specified trigger as wrong la- 53

bels desired by the adversary. Typically, a backdoor injection 54

can be achieved by directly modifying the neurons (Liu et al. 55

2017) or poisoning the training datasets (Gu, Dolan-Gavitt, 56

and Garg 2017). In practice, the developer may obtain a poi- 57

soned dataset if the source is untrusted. It is hard to detect 58

such a threat as a very small ratio of malicious samples can 59

lead to a backdoored model. When the developer outsources 60

the model training task to an untrusted cloud provider, the 61

adversary can inject the backdoor by either dataset poison- 62

ing or parameter modifications. It will then be difficult for 63

the developer to detect the existence of backdoors, as the 64

model only has anomalous predictions on samples with trig- 65

gers, which are agnostic to the developer. 66

It is of paramount importance to have an effective method 67

to address these severe threats. Past works proposed some 68

approaches to detect the existence of backdoors or eliminate 69

them from the infected models. Unfortunately, most of them 70

have certain limitations. First, some solutions require the de- 71

fender to have poisoned data samples (Chen et al. 2018; Du, 72

Jia, and Song 2019), or knowledge of the attack techniques 73

(Xu et al. 2019) and triggers (Chou et al. 2018). This as- 74

sumption is not held when the defender is only given the vic- 75

tim model. Second, these solutions are not comprehensive to 76

cover all different types of attack techniques and trigger pat- 77

terns. For instance, (Wang et al. 2019) is effective against the 78

single target attack but fails to identify the all-to-all attack 79

where there is more than one target label for the malicious 80

samples (Gu, Dolan-Gavitt, and Garg 2017). We will em- 81

pirically validate this in our evaluation section. (Liu et al. 82

2019) cannot defeat attacks with complex trigger patterns 83

(e.g., watermarking in the background), as claimed in that 84

paper. More importantly, most of these defense works only 85

consider traditional backdoor attacks, while ignoring the re- 86

cently discovered advanced attacks (e.g., invisible backdoor 87



attacks (Li et al. 2019)). As one of our contributions, we will88

categorize past defense solutions and analyze their limita-89

tions in this paper.90

Motivated by the gap between the severity of backdoor at-91

tacks and the limitations of existing solutions, we propose92

GYM, a novel and comprehensive method to defeat various93

DNN backdoor attacks. A successful backdoor attack relies94

on both the backdoor in the infected model and effective trig-95

gers hidden in the malicious samples. Thus, the key idea of96

our approach is the integration of model fine-tuning (which97

is used to weaken the effects of the backdoor) and input pre-98

processing (which is used to affect the impact of triggers).99

Given an infected model, our solution has two steps. During100

the fine-tuning phase, it retrains the model for a few epochs101

using some intensive preprocessed clean data samples1. Dur-102

ing the inference phase, each data sample (either clean one or103

trigger-patched one) is first transformed by a lightweight pre-104

processing function and then fed into the fine-tuned model105

for prediction. With these two steps, the model will correct106

the labels of malicious samples while maintaining high per-107

formance for normal data.108

Our method is effective against various backdoor attacks109

and trigger patterns and does not need any prior knowledge110

about the attack techniques or poisoned samples. We conduct111

comprehensive evaluations to validate our solution. We con-112

sider different datasets (Cifar10, GTSRB, PubFig) and mod-113

els (ResNet-18, LeNet-8, VGG-16). We implement differ-114

ent attack techniques (BadNet (Gu, Dolan-Gavitt, and Garg115

2017), Neural Trojan (Liu et al. 2017), invisible backdoor116

(Li et al. 2019)), different triggers (Square, watermark, ad-117

versarial perturbation) and different modes (single target, all-118

to-all). Our method can successfully defeat all these threats.119

Evaluations also show that our method can outperform four120

state-of-the-art works (Neural Cleanse (Wang et al. 2019),121

Fine-pruning (Liu, Dolan-Gavitt, and Garg 2018), FLIP, and122

ShrinkPad-4 (Li et al. 2020b)) in defeating different back-123

door attacks and enhancing the model robustness.124

Background about Backdoor Attacks125

Given a DNN model fθ with parameters θ, a backdoor at-126

tack can be formulated as a tuple (∆θ, δ), where ∆θ is the127

backdoor injected by the adversary to the model parameters,128

and δ is an attacker-specified trigger. Then the compromised129

model fθ+∆θ still has state-of-the-art performance for nor-130

mal samples: fθ+∆θ(x) = fθ(x),∀x ∈ X . However, for an131

input sample containing the trigger, the model will predict a132

label different from the correct one: y′ = fθ+∆θ(x + δ) 6=133

fθ+∆θ(x),∀x ∈ X . y′ can be a fixed label pre-determined134

by the attacker, or an arbitrary unmatched label.135

The adversary has multiple ways to embed the backdoor136

into the DNN model. (1) Data poisoning (Gu, Dolan-Gavitt,137

and Garg 2017; Chen et al. 2017): the adversary generates a138

number of poisoned samples with the desired labels and in-139

corporates such samples into the clean training set to train a140

backdoor model. (2) Direct modification (Liu et al. 2017): the141

1This step can be applied to the case where the training set is
poisoned as well. The defender can use this intensive function to
preprocess the dataset and then trains the model from scratch.

adversary can select critical neurons and weights for modifi- 142

cation via model retraining. (3) Transfer learning (Yao et al. 143

2019): if the adversary injects backdoor into a teacher model, 144

the student models transferred from this teacher model may 145

still contain the backdoor. 146

There can be different designs for malicious triggers. The 147

most common one is a small block with several pixels placed 148

at the corner of the image. For instance, (Gu, Dolan-Gavitt, 149

and Garg 2017) added a white square onto the right bottom 150

of the image as the trigger. (Liu et al. 2017) introduced a 151

colored square to activate the backdoor. 152

It is possible that the trigger size is big and located across 153

the images. Such patterns need to be designed not to affect 154

the clean samples. For instance, watermarks are embedded 155

over the background of the samples (Liu et al. 2017; Chen 156

et al. 2017). A special pair of glasses function as a trigger 157

when it is worn by a person (Chen et al. 2017). 158

The third type is invisible triggers, introduced in (Liao 159

et al. 2018; Li et al. 2019). Inspired by the adversarial exam- 160

ples, such triggers are imperceptible perturbations, which are 161

visually indistinguishable from normal samples. These trig- 162

gers can make the corresponding backdoor attacks stealthier, 163

and it is hard to detect poisoned data from the training set. 164

Defense Requirements and Existing Solutions 165

Defense Requirements 166

To effectively defeat DNN backdoor attacks, a good solution 167

must have the following properties. 168

• Robust: the solution should be capable of effectively de- 169

tecting or eliminating backdoor with a low attack success 170

rate. It should be hard to evade this solution even if the 171

adversary knows the defense mechanism. 172

• Attack-agnoistic: the defender does not have any knowl- 173

edge of the employed attack technique, trigger informa- 174

tion (pattern, location, size, desired label, etc.). He does 175

not have access to the poisoned data samples either. All he 176

has are clean data samples and a suspicious model that can 177

be potentially infected with backdoors. 178

• Comprehensive: the defense solution should be able to 179

cover different types of backdoor attacks, regardless of the 180

size, complexity, and visibility of triggers, as well as the 181

attacker’s target labels. 182

• Functionality-preserving: this solution should have a 183

small impact on the model performance of clean samples. 184

• Lightweight: the defender should be able to defeat back- 185

door attacks in a lightweight manner. Given a suspicious 186

model, the defense cost should be much smaller than train- 187

ing a clean model from scratch. During inference, the pre- 188

diction process cannot incur high overhead, either. 189

Review of Existing Solutions 190

Various defense techniques against backdoor attacks have 191

been proposed. We classify them into different categories and 192

check their satisfaction of the above requirements. 193

Backdoor Detection. The most popular direction is to check 194

if one DL model has a backdoor injected. (Wang et al. 2019) 195



made an attempt towards this goal with boundary outlier de-196

tection. Some works followed a similar idea to detect the ex-197

istence of backdoors and adopted different techniques to re-198

cover the trigger, such as Generative Adversarial Networks199

(Chen et al. 2019), new regularization terms (Guo et al.200

2019), Generative Distribution Modeling (Qiao, Yang, and201

Li 2019), and Artificial Brain Stimulation (Liu et al. 2019).202

Unfortunately, these approaches make two unrealistic as-203

sumptions. First, they assume there is only one target label204

for all malicious samples (i.e., single-target attack). They205

are ineffective when the adversary has more than one tar-206

get labels (e.g., all-to-all attack (Gu, Dolan-Gavitt, and Garg207

2017)). Second, they assume the trigger must have a small208

size and simple pattern. They fail to detect complex triggers209

such as watermarks in the background. Hence, these solu-210

tions cannot meet the comprehensiveness requirement.211

(Xu et al. 2019) proposed another detection approach212

without the above assumptions. It tries to build a classifier213

to distinguish benign and infected models. It needs to mimic214

all possible backdoor attacks to build all those models, which215

is costly and impractical as there are too many existing and216

unknown ways to perform backdoor attacks on DL models.217

This solution is thus not lightweight.218

Backdoor Invalidation. This direction is to remove the po-219

tential backdoor from the model directly without detection.220

(Liu, Dolan-Gavitt, and Garg 2018) proposed to use fine-221

pruning and fine-tuning to break the backdoor effects. How-222

ever, this solution may reduce the prediction accuracy over223

clean samples, which is not functionality-preserving.224

Trigger Detection. Instead of checking the suspicious225

model, this direction focuses on the samples with triggers.226

It can be applied to two cases. The first case is to detect227

if the training data set contains poisoned samples. For in-228

stance, (Chen et al. 2018) discovered that normal and poi-229

soned data yield different features in the last hidden layer’s230

activations. (Tran, Li, and Madry 2018) proposed a new rep-231

resentation to classify benign and malicious samples. (Du,232

Jia, and Song 2019) adopted differential privacy to detect ab-233

normal training samples. These solutions cannot work when234

the defender only has the infected model rather than the poi-235

soned data samples, especially when the backdoor is injected236

via direct neuron modification instead of data poisoning (Liu237

et al. 2017). They cannot achieve comprehensiveness.238

The second case is the online detection of triggers in the239

inference samples. (Gao et al. 2019) proposed to superim-240

pose a target sample with a benign one from a different class.241

A benign sample’s prediction result will be altered while a242

malicious sample will still keep the same due to the triggers.243

However, this approach may not be robust when the super-244

imposed benign image has overlap with the trigger. (Chou245

et al. 2018) proposed to use image processing techniques246

(e.g., Grad-CAM) to visualize and reveal the trigger. This ap-247

proach requires prior knowledge of the trigger pattern, which248

is not attack-agnoistic.249

Trigger Invalidation. The last direction is to directly inval-250

idate the effects of the triggers from the inference samples.251

(Li et al. 2020b) proposed to adopt image preprocessing to252

transform input such that the backdoor model will give cor-253

rect results for both benign and malicious samples. However,254

since backdoor models and triggers have much higher robust- 255

ness than adversarial attacks, this solution is not comprehen- 256

sive, as it can only handle simple triggers, but fail to defeat 257

complex ones (e.g., watermarks in the background). 258

Our Proposed Method 259

In this section, we present the details of our proposed solu- 260

tion, GYM, to defeat DNN backdoor attacks. As discussed in 261

the previous section, it is difficult to counter backdoor at- 262

tacks and meet those requirements using just one defense 263

direction. So our method will combine the mechanisms of 264

both backdoor invalidation and trigger invalidation. Figure 265

1 illustrates the methodology overview. It consists of two 266

stages. The first stage is fine-tuning: we introduce an inten- 267

sive preprocessing function to transform a small number of 268

clean data samples, which will be used to fine-tune the in- 269

fected model. The second stage is inference: we design a 270

lightweight function to preprocess the inference samples, and 271

then send the transformed output to the fine-tuned model for 272

prediction. This function can remove the effects of triggers 273

while still preserving the model’s performance over clean 274

samples. Below we describe each step in detail. 275

Stage 1: Fine-tuning with Intensive Preprocessing 276

We fine-tune the model with preprocessed data samples to 277

weaken the malicious impact of injected backdoors. Our 278

method is different from previous works that directly fine- 279

tune or fine-prune the model (Liu, Dolan-Gavitt, and Garg 280

2018; Wang et al. 2019), as they can compromise the model 281

usability. We prepare a fine-tuning dataset with a preprocess- 282

ing function consisting of some transformations (Figure 2): 283

T1: Optical distortion. The optical distortion used here is 284

a pincushion distortion (Liu, Malcolm, and Xu 2010), where 285

image magnification increases with the distance from the op- 286

tical axis. In Figure 2, we can observe that lines that do not go 287

through the center of the image are bowed towards the center 288

after this transformation, like a pincushion. We conduct this 289

procedure to map the representation of inputs away from the 290

original representation in the hyperdimensional space. As the 291

accuracy of clean data can be recovered with our fine-tuning, 292

malicious samples during inference will have a lower success 293

rate with the shifted decision boundary. 294

T2: Three median filters in different spaces. A set of three 295

median filters are employed to reinforce the model against 296

the backdoors by fine-tuning with the preprocessed samples. 297

The first median filter is performed in the gamma space 298

with a gamma compression. This filter can help the model ac- 299

quire adaptation against strong perturbation cost by a median 300

filter. We set the encoding gamma value as 0.6 to lighten the 301

images. This gamma compression causes large-value pixels 302

inside the image to bend in together. The small-value pixels 303

in the image thus have a better contrast against large-value 304

pixels. Therefore, the median filter can better smoothen those 305

pixels. The kernel size of the median filter is 5× 5. 306

The second median filter is also performed in the gamma 307

space but with a gamma extension. We first multiply each 308

pixel with the multiplier (set as 1.53) to further lighten up 309

the images to bend large-value pixels together and disrupt the 310



Figure 1: The workflow of GYM to defeat DNN backdoor attacks (using PubFig dataset as an example): 1 An intensive
preprocessing function is introduced over the inputs, the output of which is used to fine-tune the infected model. 2 The
inference samples are transformed via an inference preprocessing function to invalidate triggers for the fine-tuned model.

Figure 2: The intensive preprocessing function includes three
affine transformations (optical distortion, random scale down
with padding, and SAT (Zeng et al. 2020)) and one set of
three median filters in different spaces.

continuity between pixels. Then, a gamma extension is used311

to dim the image for obtaining a higher contrast. Third, we312

scale down the image to 75% of its original size and conduct313

the same median filter as the first one in this gamma exten-314

sion space. Such an operation can help the fixed-kernel me-315

dian filter remove more outliers globally and obtain smoother316

results. Finally, we resize the image back to its original size.317

The third median filter works with another scaling down318

(resize) procedure. We scale down the image to 0.8 of its319

original size. The third median filter further smoothens the320

pixels in this downscale space.321

As shown in Figure 2, with three median filters, a per- 322

turbed result is obtained. The entire transformation can 323

strengthen the infected model and shift the decision bound- 324

ary away with preprocessed data. This guarantees the model 325

is robust over clean samples. 326

T3: Random scaling down with padding. This procedure 327

scales down the image and then resizes it up in a ran- 328

dom manner. Inspired by ShinkPad (Li et al. 2020b), which 329

demonstrated the capability of invalidating BadNets (Gu, 330

Dolan-Gavitt, and Garg 2017) triggers, our transformation 331

improves the randomness level. First, we randomly scale the 332

image into a smaller size ranging between [0.8-1] of the orig- 333

inal size, by dropping random pixels. We then pad it to the 334

original size by randomly choosing a point as the center. 335

Such operation can shift all the pixels away from the ac- 336

tual coordinates. Thus, samples will likely move away from 337

the infected model’s original representation output (with a 338

certain accuracy drop). This procedure can harden the DL 339

models’ boundary to help the fine-tuned model adapt to the 340

pixels shifting around. Thus, when adopting a shifting strat- 341

egy for preprocessing input samples during the inference, the 342

model’s accuracy on clean samples can be maintained. 343

T4: Stochastic Affine Transformation (SAT). Finally, we 344

adopt a preprocessing function in (Zeng et al. 2020) to distort 345

the image with rotation, scaling, and shifting. SAT first ran- 346

domly shifts all the pixels horizontally and vertically. Then, 347

it randomly rotates the image to a certain scale. Finally, it 348

randomly scales the image up or down to produce the fi- 349

nal output. The visual effect is shown in Figure 2. Note that 350



some steps in SAT are similar to the previous transforma-351

tion. Adopting these two random transformations can make352

the fine-tuned model better adapt to the affine transforma-353

tions used during the inference phase.354

Fine-tuning the suspicious model. As shown in Figure 2,355

the intensive preprocessing function can introduce significant356

distortion to the samples. The performance of the model will357

drop over the preprocessed samples. Our solution fine-tunes358

the model with the preprocessed samples to help the model359

recognize such transformations. GYM only requires a small360

number of epochs with a few fine-tuning samples to reach361

state-of-the-art performance. Then, the classification bound-362

ary of the infected model will be altered against malicious363

samples patched with the triggers.364

Stage 2: Inference with Lightweight Preprocessing365

In this stage, in order to reduce the computation complex-366

ity and overhead of inference, we design a lightweight ver-367

sion of the preprocessing function to transform the input be-368

fore sending it to the fine-tuned model. This inference pre-369

processing function only includes a set of two median filters370

and one affine transformation, as shown in Figure 3. The first371

median filter is used to smoothen the pixels in the raw in-372

put. In contrast, the second median filter is integrated with373

the scaling down mechanism (i.e., same as the third median374

filter in the intensive preprocessing). Finally, the Stochastic375

Affine Transformation (SAT) is adopted over the filtered data376

to map the pixels away from the original coordinates. With377

such transformations, the model can still recognize the clean378

samples correctly, while the fine-tuned backdoor cannot rec-379

ognize the preprocessed triggers anymore. This makes our380

solution robust against both normal and malicious samples.381

Figure 3: Inference Preprocessing consists of two transfor-
mations: a set of two median filters affects the triggers from
two spaces; SAT helps distort the image.

Security Analysis382

We visually interpret the mechanism of our defense solution,383

as shown in Figure 4. The left figure shows the infected de-384

cision boundary between the original class (red region) and385

the attacker-desired class (white region) in a backdoor attack.386

We can see such an infected model can still perform well387

on clean samples. However, the trigger-patched data in the388

source class will be classified to be the target class as the trig-389

ger moves them across the boundary. Since the patched sam-390

ples still contain features similar to the samples in the source391

class, and the trigger impact is small, those patched samples392

will be close to the boundary in the hyper-dimensional space.393

Figure 4: The visual interpretation of GYM over an infected
model’s decision boundary.

The blue arrows represent our preprocessing function, which 394

maps all the clean data used for fine-tuning away from the 395

original location. The fine-tuning process can shift the in- 396

fected decision boundary adaptive to the fine-tuning data. 397

Since patched data are not used in fine-tuning, their hyperdi- 398

mensional representation will not be shifted with the others. 399

Thus, the new boundary can correct the prediction of patched 400

data into the source class again. 401

Evaluation 402

Implementation 403

We conduct a comprehensive evaluation of our proposed de- 404

fense against different kinds of backdoor attacks. Table 1 405

summarizes the configurations of these attacks, as well as 406

the target models and datasets. We mainly replicate the same 407

implementations as the original attack papers. 408

Dataset Model Attack Target
Label

Poisoniong
Ratio

Cifar10 ResNet-18

Trojan (WM) ‘7’ 10%
Trojan (SQ) ‘7’ 10%

BadNets All-to-all ‘i+1’ 10%
L2 invisible ‘3’ 5%
L0 invisible ‘4’ 5%

GTSRB LeNet-8 BadNets ‘33’ 10%

PubFig VGG-16 Trojan (WM) ‘0’ 10%
Trojan (SQ) ‘0’ 10%

Table 1: Datasets and backdoor attacks in evaluation.

Cifar10 is a wildly-adopted dataset for image classifica- 409

tion. It contains 50000 training images and 10000 testing im- 410

ages. We adopt ResNet-18 (He et al. 2016) to train five back- 411

door models with different triggers. We inject 10% of poi- 412

soned samples into the training set to generate the first three 413

models, while the last two models have a poisoning ratio of 414

5%, which is enough for the invisible backdoor attacks. All 415

the infected models are trained with Adadelta (Zeiler 2012) 416

as the optimizer and an initial learning rate of 0.05 for 200 417

epochs. Specifically, for the first two models, we implement 418

the trojan attack in (Liu et al. 2017) with the trigger of the wa- 419

termark (WM) and square (SQ), respectively. The attacker’s 420



Model Attack Baseline Inference (I) Fine-tuning
+ Inference (I)

Fine-tuning
+ Inference (L)

ACC ASR TCP ACC ASR ACC ASR ACC ASR

ResNet-18 (Cifar10)

Trojan (WM) 0.830 1.000 0.075 0.520 0.810 0.805 0.130 0.785 0.045
Trojan (SQ) 0.880 1.000 0.100 0.600 0.635 0.760 0.065 0.780 0.040

BadNets All-to-all 0.875 0.670 0.125 0.435 0.150 0.765 0.020 0.670 0.030
L2 invisible 0.900 0.985 0.110 0.610 0.420 0.790 0.205 0.810 0.180
L0 invisible 0.895 0.990 0.070 0.645 0.135 0.805 0.080 0.825 0.080

LeNet-8 (GTSRB) BadNets 0.960 0.985 0.020 0.660 0.170 0.875 0.045 0.905 0.035

VGG-16 (PubFig) Trojan (WM) 0.960 1.000 0.025 0.400 0.360 0.840 0.010 0.910 0.010
Trojan (SQ) 0.955 1.000 0.015 0.400 0.055 0.815 0.015 0.870 0.015

Table 2: Evaluation of ACC and ASR with different techniques of GYM: (I) denotes intensive preprocessing, while (L) denotes
lightweight preprocessing.

ResNet-18 (Cifar10)
Trojan (WM) Trojan (SQ) BadNets (All-to-all) L2 invisible L0 invisible

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
No Defense 0.830 1.000 0.880 1.000 0.875 0.670 0.900 0.985 0.895 0.990

GYM 0.785 0.045 0.780 0.040 0.765 0.020 0.810 0.180 0.825 0.080
Neural Cleanse (unlearning) 0.895 0.085 0.910 0.155 NA NA NA NA NA NA

Fine-pruning 0.835 0.195 0.845 0.235 0.630 0.055 0.860 0.990 0.860 0.880
Fine-pruning (finetuned) 0.855 0.650 0.870 0.140 0.775 0.055 0.895 0.935 0.900 0.810

FLIP 0.830 0.880 0.775 0.090 0.855 0.020 0.900 0.965 0.890 0.975
ShrinkPad-4 0.720 1.000 0.800 0.075 0.625 0.130 0.855 0.735 0.850 0.985

Table 3: Comparison of ACC and ASR between GYM with previous defense methods for models on the Cifar10 dataset.

target label is set as class ‘7:Horse’. For the third model, we421

replicate the all-to-all attack in BadNets (Gu, Dolan-Gavitt,422

and Garg 2017): the trigger is a white square of 5× 5 pixels423

located at the right bottom of the image. The target label of424

a sample from class i is set to be class i + 1. For the last425

two ResNet-18 models, we replicate the L2 and L0 invisi-426

ble attacks in (Li et al. 2019). The target class is obtained by427

forward-passing the trigger to a pre-trained clean ResNet-18428

model: ‘3:Cat’ for L2 attack and ‘4:Deer’ for L0 attack.429

The second dataset included in the evaluation is the GT-430

SRB (Stallkamp et al. 2012), which contains 35228 training431

samples and 12630 testing samples in 43 classes. Different432

from the Cifar10 case, we directly obtain a backdoor model433

(LeNet-8) from (Wang et al. 2019), which has been com-434

promised by the BadNets technique (Gu, Dolan-Gavitt, and435

Garg 2017). The trigger is a white square of 5 × 5 pixels at436

the right bottom, and the target label is ‘33:turn right ahead’.437

The last dataset for evaluation is the PubFig (Kumar et al.438

2009), which contains 11070 training images and 2768 test-439

ing images of 83 celebrities. We also direct get two backdoor440

models (VGG-16) from (Jin et al. 2020), compromised by441

the Trojan attacks (Liu et al. 2017). The trigger patterns are442

the same as the Cifar10 case (WM and SQ) and the target443

label is ‘0:Adam Sandler’.444

We use Keras with Tensorflow backend as the DL frame-445

work for the implementations. We adopt model accuracy446

(ACC) over clean samples and attack success rate (ASR)447

over patched samples to quantify a DL model’s robustness.448

ACC is measured using 200 clean samples, and ASR is cal-449

culated using 200 different samples patched with the corre-450

sponding triggers. A good defense should be effective (low451

ASR) and functionality-preserving (high ACC). We conduct452

all the experiments on a server equipped with 8 Intel I7- 453

7700k CPUs and 4 NVIDIA GeForce GTX 1080 Ti GPUs. 454

Effectiveness of Each Technique 455

We first evaluate the ACC and ASR with different techniques 456

from GYM. The results are summarized in Table 2. The Base- 457

line column shows the results of the infected model without 458

any defense. We use a new metric, Target Class Probability 459

(TCP), to denote the percentage that the infected model will 460

predict the clean testing data as the target class. Clearly, a 461

good defense should make the ASR close to or even below 462

TCP, in order to defeat the attacks. The Inference (I) column 463

demonstrates the results when we just use intensive prepro- 464

cessing for inference without fine-tuning the model. The last 465

two columns in Table 2 present the results when we fine-tune 466

the model with intensive preprocessing and then perform in- 467

ference with intensive preprocessing and lightweight prepro- 468

cessing, respectively. 469

For the inference with intensive preprocessing, we can ob- 470

serve a severe drop in ACC due to the absence of fine-tuning. 471

However, the ASR of only four infected models drops be- 472

low 0.2. This indicates that solely adopting a strong prepro- 473

cessing function cannot effectively invalidate the trigger, as 474

many state-of-the-art backdoor triggers are preprocessing- 475

robust (e.g., Trojan WM, L2 invisible). A common trait of 476

those kinds of robust triggers is that the trigger size is close 477

to the sample space, making them hard to be removed as al- 478

most all the pixels in the patched data will be affected. 479

For the Fine-tuning+Inference (I), we use the intensive 480

function to preprocess 10000 clean samples and then use 481

them to fine-tune the model for five epochs. Compared to 482

the cost of training a new model from scratch, which can 483



take more than 200 epochs using 50000 training samples in484

our case, our fine-tuning is very lightweight. As shown in485

Table 2, we observe that the fine-tuned model can increase486

the ACC and significantly decrease ASR on intensive pre-487

processed data, even for preprocessing-robust triggers. This488

conforms to the security analysis in the previous section that489

the decision boundary can shift with the fine-tuning data and490

encompass the patched data as the ACC rises. It is worth not-491

ing that the ASR of the L2 invisible attack is still at a rela-492

tively high level (0.205). This calls for a stronger preprocess-493

ing mechanism to tackle such a stealthy attack.494

Finally, we check our complete solution, where intensive495

preprocessing is adopted for fine-tuning, and lightweight pre-496

processing is used for inference. As shown in the column of497

Fine-tuning + Inference (L) in Table 2, we can conclude that,498

in most cases, the lightweight preprocessing can further in-499

crease the ACC and reduce ASR. One counterexample here500

is the BadNets All-to-all attack. where ACC has a relative501

large drop. The reason is that the patch data of this infected502

model cover all the decision boundaries across all the classes.503

Thus, reducing the defense scale can cause a worse result504

than inference with the intensive preprocessing. This case505

can be resolved by adding more data to the fine-tuning set506

and increasing the number of tuning epochs. Our solution507

works better for the attacks with fewer target labels. In a nut-508

shell, the proposed defense can successfully mitigate all the509

attacks in our consideration.510

Comparison with Existing Defense Methods511

Next, we compare GYM with some existing solutions: Neural512

Cleanse with Unlearning (Wang et al. 2019), Fine-pruning513

(Liu, Dolan-Gavitt, and Garg 2018), FLIP, and ShrinkPad-4514

(Li et al. 2020b). To have a fair comparison, for all defense515

methods based on fine-tuning, we set the number of available516

clean samples as 10000. For Fine-pruning, we only prune the517

last convolutional layer of the infected model. We stop the518

pruning process when the validation accuracy is decreased519

by 4% compared to the baseline ACC, as suggested in (Liu,520

Dolan-Gavitt, and Garg 2018). The number of epochs to fine-521

tune the pruned model is one.522

Table 3 shows the comparison results using the Cifar10523

dataset, where we train the backdoor model from differ-524

ent poisoned datasets. We can observe that GYM gets the525

best defense results than other solutions. Particularly, Neu-526

ral Cleanse fails to detect the backdoor caused by the Bad-527

Nets All-to-all technique as it assumes there is only one tar-528

get label. Also, since the original design of Neural Cleanse529

did not consider invisible attacks, its out layer detector can-530

not discern the target class. Hence, it fails to detect invis-531

ible backdoor attacks as well2. FLIP and ShrinkPad-4 are532

not able to tackle complex triggers such as watermarks or533

imperceptible perturbations. This confirms the limitations of534

preprocessing-only approaches.535

Table 4 and 5 present the comparisons for the backdoor536

models on GTSRB and PubFig datasets. The infected mod-537

2We can manually set the target label in the detector to make
it work. However, this is impractical due to the violation of attack-
agnostic requirement

LeNet-8 (GTSRB)
BadNets

ACC ASR
No Defense 0.960 0.985

GYM 0.905 0.035
Neural Cleanse (unlearning) 0.960 0.190

Fine-pruning 0.930 0.020
Fine-pruning (finetuned) 0.940 0.545

FLIP 0.535 0.005
ShrinkPad-4 0.945 0.080

Table 4: Comparison of ACC and ASR with past defenses
for the model on the GTSRB dataset.

VGG-16 (PubFig)
Trojan (WM) Trojan (SQ)

ACC ASR ACC ASR
No Defense 0.960 1.000 0.955 1.000

GYM 0.910 0.010 0.870 0.015
Neural Cleanse (unlearning) 0.880 0.025 0.810 0.010

Fine-pruning 0.909 1.000 0.855 1.000
Fine-pruning (finetuned) 0.929 1.000 0.895 1.000

FLIP 0.930 0.385 0.915 0.015
ShrinkPad-4 0.960 0.995 0.940 0.015

Table 5: Comparison of ACC and ASR with past defenses
for models on the PubFig dataset.

els are downloaded directly online. We can also observe the 538

advantages of GYM over other solutions. It is worth not- 539

ing that the ASR of Fine-pruning maintains 1 on the PubFig 540

dataset, indicating that a fixed early stop criterion of 4% ac- 541

curacy drop in ACC is not effective and generalizable. The 542

defender cannot monitor the ASR to determine the optimal 543

moment to stop the fine-pruning and balance the security- 544

usability trade-off. Hence, it is impractical to apply this tech- 545

nique when the defender is attack-agnostic. In contrast, GYM 546

can be used easily without this concern. 547

Conclusion 548

This paper proposes GYM, a novel and efficient solution to 549

mitigate backdoor attacks against DL models. Unlike past 550

works focusing on either infected models or triggers, our so- 551

lution adopts novel techniques to break the effects of both 552

backdoors in the models and triggers in the input samples. 553

We first design a novel fine-tuning technique with intensive 554

preprocessing to mitigate backdoors in the infected model. 555

Then, during the inference stage, we propose a lightweight 556

preprocessing function to remove the potential triggers from 557

the samples. The integration of these techniques can effec- 558

tively defeat various backdoor threats with different types of 559

triggers, without any prior adversarial knowledge. Extensive 560

evaluations show that our method is more robust and com- 561

prehensive than existing ones. 562
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