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Abstract

Deep Neural Networks are well-known to be vulnerable to1

Adversarial Examples. Recently, advanced gradient-based at-2

tacks were proposed (e.g., BPDA and EOT), which can sig-3

nificantly increase the difficulty and complexity of designing4

effective defenses. In this paper, we present a study towards5

the opportunity of mitigating those powerful attacks with only6

pre-processing operations. We make the following two contri-7

butions. First, we perform an in-depth analysis of those attacks8

and summarize three fundamental properties that a good de-9

fense solution should have. Second, we design a lightweight10

preprocessing function with these properties and the capabil-11

ity of preserving the model’s usability and robustness against12

these threats. Extensive evaluations indicate that our solutions13

can effectively mitigate all existing standard and advanced at-14

tack techniques, and beat 11 state-of-the-art defense solutions15

published in top-tier conferences over the past 2 years.16

Introduction17

Szegedy et al. (Szegedy et al. 2013) proposed the concept18

of Adversarial Examples (AEs): with imperceptible modifi-19

cations to the input, the Deep Learning (DL) model will be20

fooled to give wrong prediction results. Since then, a huge21

amount of research effort has been spent to enhance the pow-22

ers of the attacks, or mitigate the new attacks. This leads to23

an arms race between adversarial attacks and defenses. Ba-24

sically, the generation of AEs can be converted into an op-25

timization problem: searching for the minimal perturbations26

that can cause the model to predict a wrong label. Standard27

attacks used the gradient-based approaches to identify the28

optimal perturbations (e.g., FGSM (Goodfellow, Shlens, and29

Szegedy 2014), I-FGSM (Kurakin, Goodfellow, and Bengio30

2016), LBFGS (Szegedy et al. 2013), C&W (Carlini and31

Wagner 2017b)). To defeat those attacks, a lot of defenses32

were proposed to obfuscate the gradients such as making33

them shattered or stochastic (Guo et al. 2018; Prakash et al.34

2018; Xie et al. 2018; Buckman et al. 2018).35

Unfortunately, those gradient obfuscation-based defenses36

were further broken by advanced attacks (Athalye, Carlini,37

∗Yi Zeng and Han Qiu have the equal contribution.

and Wagner 2018; Athalye et al. 2018). Backward Pass Dif- 38

ferentiable Approximation (BPDA) was introduced to han- 39

dle the shattered gradients by approximating the gradients of 40

non-differentiable functions. Expectation over Transforma- 41

tion (EOT) was designed to deal with the stochastic gradient 42

by calculating the expectation of gradients of random func- 43

tions. These two attacks have successfully defeated the previ- 44

ous defenses (Athalye, Carlini, and Wagner 2018), and even 45

new defenses published after their disclosure was still proven 46

to be vulnerable to either BPDA, EOT, or their combination 47

(Tramer et al. 2020). 48

The question we want to address is: is it possible to con- 49

tinue the arms race by mitigating the aforementioned ad- 50

vanced attacks with more robust defense solutions? This is 51

a challenging task. First, these attacks assume very high ad- 52

versarial capabilities (Tramer et al. 2020): the attacker knows 53

every detail of the DL model and the potential defenses. This 54

significantly increases the difficulty of defense designs and 55

invalidates existing solutions that require to hide the model or 56

defense mechanisms. Second, BPDA and EOT target the root 57

causes of gradient obfuscation: the non-differentiable opera- 58

tion can always be approximated, and the random operation 59

can be estimated by its expectation. It is indeed difficult for 60

the defender to bypass these assumptions while still preserv- 61

ing model usability. 62

One possible defense strategy is adversarial training (Ku- 63

rakin, Goodfellow, and Bengio 2016): we can keep gen- 64

erating adversarial examples from the training-in-progress 65

model using the Projected Gradient Descent (PGD) attack 66

technique, and augmenting them into the training set to im- 67

prove the model’s robustness. This strategy is shown to be 68

effective against different types of adversarial attacks includ- 69

ing BPDA and EOT. However, it can bring a significant cost 70

to perform adversarial training with large-scale DNN mod- 71

els and datasets. So we are more interested in an efficient 72

method, which can be directly applied to a given model with- 73

out altering it. (Raff et al. 2019) proposed a preprocessing- 74

based solution: they tested 25 existing preprocessing func- 75

tions and placed them into 10 groups. For each inference, an 76

ensemble of 5∼10 functions is randomly selected to trans- 77

form the input before feeding it to the target model. This 78



strategy can mitigate a more sophisticated BPDA, where the79

adversary attempts to use a neural network to approximate80

the non-differentiable operations.81

In this paper, we also focus on the preprocessing-based82

defense to enhance the model’s robustness against all exist-83

ing adversarial attacks. Different from (Raff et al. 2019), we84

aim to utilize a single lightweight transformation function85

to preprocess the input images. This is expected to signifi-86

cantly reduce the computation cost and logic complexity for87

model inference, which is critical when the task is deployed88

in resource-constrained edge and IoT devices. To achieve this89

goal, we make the following contributions.90

First, we analyze the features and assumptions of different91

attacks and identify three properties for designing a quali-92

fied preprocessing function g(·). The first one is usability-93

preserving, which is to guarantee g(·) will not affect the94

model performance on clean samples. The next two prop-95

erties are non-differentiability and non-approximation, to en-96

hance the model robustness against both standard and ad-97

vanced gradient-based attacks.98

Second, we introduce a novel preprocessing function that99

can meet the above properties. Our function consists of two100

steps: (1) a DCT-based quantization is used to compress the101

input images, which can achieve non-differentiability; (2) a102

dropping-pixel strategy is further introduced to distort the103

image via random pixel dropping and displacement. This104

step can increase the difficulty and fidelity of approximation.105

Both steps are usability-preserving, thus their integration will106

cause a negligible impact on the model performance.107

We conduct extensive experiments to show the effective-108

ness of our solutions. It can constrain the attack success rate109

under 7% even with 10000 rounds of BPDA+EOT attack110

(dozens of GPU hours for 100 samples), which significantly111

outperform 11 state-of-the-art gradient obfuscation defenses112

published recently in top-tier conferences. We release our113

code online1 to better promote this research direction.114

Backgrounds115

In this section, we briefly review the arms race between ad-116

versarial attacks and defenses on DNN models.117

Round 1: attack. L-BFGS (Szegedy et al. 2013) was ini-118

tially adopted to solve the optimization problem of AE gen-119

eration. Then, many gradient-based attacks were introduced:120

gradient descent evasion attack (Biggio et al. 2013), Fast121

Gradient Sign Method (FGSM) (Goodfellow, Shlens, and122

Szegedy 2014), I-FGSM (Kurakin, Goodfellow, and Bengio123

2016), MI-FGSM (Dong et al. 2017), Deepfool (Moosavi-124

Dezfooli, Fawzi, and Frossard 2016).125

Round 2: defense. Three categories of defenses against the126

above attacks were proposed. The first direction is adversar-127

ial training (Kurakin, Goodfellow, and Bengio 2016; Huang128

et al. 2015; Shaham, Yamada, and Negahban 2018), where129

AEs are used with normal examples together to train DNN130

models to recognize and correct malicious samples. The sec-131

ond direction is to train other models to assist the target one132

1Link removed for anonymity. The code and data are uploaded
in supplementary materials.

such as Magnet (Meng and Chen 2017) and Generative Ad- 133

versarial Trainer (Lee, Han, and Lee 2017). The third direc- 134

tion is to design AE-aware network structures or loss func- 135

tions, such as Deep Contractive Networks (Gu and Rigazio 136

2014), Input Gradient Regularization (Ross and Doshi-Velez 137

2018), and Defensive Distillation (Papernot et al. 2016). 138

Round 3: attack. A more powerful attack, C&W (Carlini 139

and Wagner 2017b), was proposed by updating the objec- 140

tive function to minimize lp distance between AEs and nor- 141

mal samples. C&W can effectively defeat Defensive Distil- 142

lation (Carlini and Wagner 2017b) and other defenses with 143

assisted models, e.g. Magnet (Carlini and Wagner 2017a). 144

Round 4: defense. Since then, gradient obfuscation was in- 145

troduced to improve the defense. Five input transformations 146

were tested to counter AEs in (Guo et al. 2018): image crop- 147

ping and rescaling, Bit-depth Reduction (BdR), JPEG, To- 148

tal Variance minimization (TV), and image quilting. Ran- 149

dom functions were also proposed for defense such as Pixel 150

Deflection (PD) (Prakash et al. 2018), Randomization layer 151

(Rand) (Xie et al. 2018), and SHIELD (Das et al. 2018). 152

Those solutions are effective against all prior attacks. 153

Round 5: attack. To defeat the gradient obfuscation tech- 154

niques, two advanced gradient approximation attacks were 155

designed. BPDA (Athalye, Carlini, and Wagner 2018) copes 156

with non-differentiable operations by approximating the gra- 157

dients. EOT (Athalye et al. 2017) deals with random op- 158

erations by averaging the gradients of multiple sessions. 159

(Tramer et al. 2020). 160

Round 6: defense. Although a large number of defense 161

works were published after the discovery of BPDA and EOT, 162

most of them did not consider or correctly evaluate these two 163

attacks. One promising defense solution is adversarial train- 164

ing (Kurakin, Goodfellow, and Bengio 2016), which aug- 165

ments the training data with the adversarially-crafted exam- 166

ples. This is indeed an effective approach to defeat these 167

advanced attacks. But it can incur a high cost as it needs 168

to keep generating adversarial examples adaptively during 169

training. It also suffers from the scalability issue, especially 170

with large-scale datasets. An alternative solution is the en- 171

semble of different preprocessing functions to increase the 172

difficulty of AE generation (Raff et al. 2019). This is also 173

in a lack of efficiency, as it requires the implementations 174

of dozens of preprocessing methods to guarantee the model 175

robustness. How to identify a simple yet effective solution 176

against both standard and advanced gradient approximation 177

attacks is still worth research effort, which we aim to explore 178

in this paper. 179

Threat Model and Problem Definition 180

Threat Model 181

There are two main types of adversarial attacks (Carlini and 182

Wagner 2017b): untargeted attacks try to mislead the DNN 183

models to an arbitrary wrong label, while targeted attacks 184

succeed only when the DNN model predicts the input as one 185

specific label desired by the adversary. In this paper, we only 186

evaluate the targeted attacks. The untargeted attacks can be 187

mitigated in a similar way. 188

We consider a white-box scenario: the adversary has all 189



details of the DNN model and full knowledge of the defense.190

The adversary is outside of the DNN system and is not able to191

compromise the inference process or the model parameters.192

In the context of computer vision, he can directly modify the193

pixel values of the input image within a certain range. We194

use l2 norm to measure the scale of added perturbations. We195

allow AEs with a maximum l2 distortion of 0.05 (as in prior196

work (Athalye, Carlini, and Wagner 2018).)197

Defense Requirements198

Based on the above threat model, we list a couple of require-199

ments for a good defense solution.200

First, no modifications on the target DNN model are al-201

lowed, such as training an alternative model with different202

structures (Papernot et al. 2016) or datasets (Yang et al.203

2019); or retraining the target model with AEs (e.g. adver-204

sarial training (Tramèr et al. 2017)). We set this requirement205

since (1) training or retraining a model significantly increases206

the computation cost and may not be practical on large-scale207

datasets like ImageNet; (2) these defenses lack generality to208

cover different attacks since they “explicitly set out to be ro-209

bust against one specific threat model” (Carlini et al. 2019).210

Second, we consider adding a preprocessing function over211

the input samples before feeding them into the DNN model.212

Such function can either remove the impacts of adversarial213

perturbations on the inference or make it infeasible for the214

adversary to generate AEs adaptively even in the white-box215

scenario. This function should be independent of the datasets216

and DNN models of similar tasks.217

Third, this solution should be lightweight with a negligi-218

ble influence on the computation cost or performance of the219

inference task. Input preprocessing can introduce a trade-off220

between security and usability: the side effect of correcting221

AEs may also alter the prediction results of benign samples.222

Designing a defense preprocessing function should balance223

this trade-off with maximum impact on the AEs and minimal224

impact on the benign ones.225

Methodology Insights226

We aim to design a preprocessing function g(·), which trans-227

forms an input image x ∈ X to an output with the same228

dimension. Then given a DNN model f(·), the inference pro-229

cess becomes y = f(g(x)). This function g(·) needs to mit-230

igate the adversarial attacks within the threat model and sat-231

isfy the defense requirements, as described in the previous232

section. We identify some properties and design philosophy233

of a good methodology in this section and give a specific al-234

gorithm in the next section.235

First, this preprocessing function must preserve the usabil-236

ity of the target model, i.e., exerting minimal influence on the237

accuracy of clean samples. This gives the first property:238

Property 1 (Usability-preserving) g(·) cannot affect the239

prediction results of clean input: f(g(x)) ≈ f(x), ∀x ∈ X240

Second, as most of the attacks generate adversarial exam-241

ples by calculating the gradients of the model parameters.242

When a preprocessing function is introduced, this calculation243

becomes:5xf(g(x)) = 5xf(x)5x g(x). So a common ap- 244

proach is shattered gradient-based defense, where the prepro- 245

cessing operation g(·) is designed to be non-differentiable. 246

With this property, the adversary is not able to craft AEs 247

based on the gradient of the model using standard methods 248

(e.g., FGSM, C&W, Deepfool, etc.). 249

Property 2 (Non-differentiability) g(·) is non-differentiable, 250

i.e., it is hard to compute an analytical solution for5xg(x). 251

It is interesting to note that this property can defeat the 252

advanced EOT attack (Athalye, Carlini, and Wagner 2018) 253

as well. This attack was proposed to invalidate the defense 254

solutions based on model input randomization, by statisti- 255

cally computing the gradients over the expected transforma- 256

tion of the input x. Formally, for a preprocessing function 257

g(·) that randomly transforms x from a distribution of trans- 258

formations T , EOT optimizes the expectation over the trans- 259

formation with respect to the input by: 5xEt∼T f(g(x)) = 260

Et∼T 5x f(g(x)). EOT can help to get a proper expecta- 261

tion with samples at each gradient descent step. However, if 262

g(·) is non-differentiable, the adversary cannot calculate the 263

gradient expectation to generate AEs either. 264

A function g(·) with the non-differentiability property can 265

still be vulnerable to sophisticated attacks, e.g., BPDA (Atha- 266

lye, Carlini, and Wagner 2018), where the adversary can 267

approximate g(·) with a differentiable function g′(x). For 268

instance, in the experimentation of the initial BPDA at- 269

tack (Athalye, Carlini, and Wagner 2018), the adversary used 270

g′(x) = x as an approximation to calculate the gradient of 271

g(x). He keeps g(·) on the forward pass and replaces it with 272

x on the backward pass. The derivative of the g(·) will be ap- 273

proximated as the derivative of the identity function, which 274

is 1. In (Raff et al. 2019), neural nets were further trained to 275

approximate non-differentiable functions, which can defeat 276

a wider range of shattered gradient-based defenses than the 277

identity function. To mitigate such threats, the preprcessing 278

function must meet the following property: 279

Property 3 (Non-approximation) It is difficult to find a dif- 280

ferentiable g′(x) that can approximate the non-differentiable 281

preprocessing function g(x) when calculating its gradients, 282

i.e.,5xg
′(x) ≈ 5xg(x). 283

A common strategy to reduce the possibility and fidelity 284

of approximating a non-differentiable function is to add ran- 285

domization in the operation. If the degree of randomization is 286

large enough, then it will be difficult for the adversary to find 287

a qualified deterministic differentiable function for replace- 288

ment, even using neural networks. However, a high random 289

transformation can also affect the model’s usability (Property 290

1). So the key to the design of this function g(·) is to balance 291

the trade-off between Properties 1 and 3 with a random non- 292

differentiable operation. Past work (Raff et al. 2019) adopted 293

an ensemble of dozens of weak preprocessing functions to 294

defend against BPDA, making the entire inference system 295

quite complex. In this paper, we aim to simplify this by de- 296

signing one single function to achieve the same goal. 297

Summary 298

A preprocessing function g(·) that can meet the above three 299

properties can effectively increase the DNN model’s ro- 300



bustness against existing adversarial attacks. Specifically,301

for standard gradient-based attacks (FGSM, C&W, LBFGS,302

Deepfool), non-differentiability in Property 2 can prohibit303

the direct calculation of gradients, and the randomization304

employed in Property 3 can obfuscate the gradient values.305

A function with these two properties can provide higher ro-306

bustness against these standard attacks.307

For those advanced attacks, the gradient expectation attack308

(EOT) can be mitigated by Property 2. If a qualified func-309

tion with Property 3 is identified, the adversary may have310

difficulty in discovering a replacement that can accurately311

approximate this function. Then gradient approximation at-312

tack (BPDA) becomes infeasible or at least requires a much313

higher cost. The combination of these two attacks cannot314

compromise the model’s robustness either.315

Our Proposed Solution316

Our proposed function g(·) involves two critical steps to317

process the input images. The first step adopts a DCT-318

based defensive quantization. Based on (Liu et al. 2019),319

we further improve the quantization table to better adapt to320

the machine’s visionary behavior. This can realize the non-321

differentiability property while preserving the model’s us-322

ability. The second step is inspired by a dropping-pixel strat-323

egy (Xie et al. 2018; Guo et al. 2018). We propose a novel324

technique to distort images by dropping randomly selected325

pixels of input images and displacing each pixel away from326

the original coordinates. This can achieve highly randomized327

outputs while keeping a high model accuracy.328

Step 1: DCT-based Quantization329

The first step is described in Lines 4-9 in Algorithm 1. The330

input image is cut into grids of pixels with the size of the331

grid d. Pixels in each grid are transformed into the fre-332

quency space via Discrete Cosine Transform (DCT) (Ahmed,333

Natarajan, and Rao 1974) as shown. Here we use a 2D-DCT334

with a grid size of 8 × 8. A defensive quantization table Q335

is then used to quantize all the frequency coefficients. These336

DCT coefficients are further de-quantized and transformed337

back into the spatial space with an inverse DCT.338

The critical factor in this step is the quantization table Q.339

(Guo et al. 2017) directly used the JPEG quantization table340

Q50 to remove the adversarial perturbations. This was proved341

ineffective. as the JPEG quantization table was designed to342

compress the image based on the sensitivity of the human343

visual system. Later on, more effective approaches were im-344

proved to defeat certain adversarial attacks with randomized345

quantization tables (Das et al. 2018) or a new quantization346

table (Liu et al. 2019). Each time when adversary generates347

AEs, the perturbation on pixel values must be large enough348

to influence the quantization results. In our solution, we in-349

troduce a novel and more effective way to generate the quan-350

tization table, as shown in Algorithm 2.351

We generate our new quantization table Q in a statistical352

learning manner by summarizing the patterns of the AEs.353

Specifically, first, all the 8 × 8 blocks in the spatial space354

(I in Line 8) are collected from all the images’ color chan-355

nels for both the clean image set and the AE set (İ in Line 9).356

ALGORITHM 1: Defense Preprocessing Function.
Input: original image I ∈ Rh×w

Output: processed image I ′ ∈ Rh×w

Parameters: defensive quantization table Q, distortion
limit δ ∈ [0, 1], size of grid d.

1 x0 = 0, y0 = 0;
2 nw = w/d, nh = h/d;
3 GI = {(xm, yn)|(m,n) ∈ {(0, ..., nw)× (0, ..., nh)}};
4 for (xm, yn) in GI\{(x0, y0)} do
5 dct = DCT (I(xm−1 : xm, yn−1 : yn));
6 dctq = Quantization(dct,Q);
7 dctd = Dequantization(dctq, Q);
8 Iquantized = IDCT (dctd);
9 end

10 for (xm, yn) in GI\{(x0, y0)} do
11 δx ∼ U(−δ, δ);
12 δy ∼ U(−δ, δ);
13 xm = xm−1 + d× (1 + δx);
14 yn = yn−1 + d× (1 + δy);
15 end
16 GI′ = {(x′m, y′n)|x′m = d×m, y′n = d× n, (m,n) ∈
{(0, ..., nw)× (0, ..., nh)}};

17 for (x′m, y
′
n) in GI′\{(x′0, y′0)} do

18 I ′(x′m−1 : x′m, y
′
n−1 : y′n) =

Remap(Iquantized(xm−1 : xm, yn−1 : yn));
19 end
20 I ′ = reshape(I ′) s.t. I ′ ∈ Rh×w;
21 return I ′;

The AE set is generated by one standard AE attack method 357

(using different AE generation methods will lead to similar 358

results). By conducting DCT on all the 8 × 8 small blocks, 359

we compare the difference of DCT frequency values (Line 360

10) to statistically understand the coordinates of the particu- 361

lar frequency coefficients which has the largest changes. 362

Fig. 1 (a) shows the spatial space of an AE with our 363

DCT-based quantization. We can observe that the DC co- 364

efficient (up-left corner) is always changed the most, while 365

low frequencies are relatively changed more than high fre- 366

quencies. The quantization table is then designed according 367

to such statistics with a principle that the frequencies that are 368

changed more often with larger values are sensitive to DNN 369

models. We normalize all the values within (0, 1) and remap 370

each value to the range of (20, 100) (Line 15). The final Q 371

table is shown in Fig. 1 (b). 372

Figure 1: Frequency space statistical results of AEs (a) and
the defensive quantization table (b).



ALGORITHM 2: DCT-based Quantization
Input: clean set In ∈ Rn×h×w×3,
adversarial set İn ∈ Rn×h×w×3,
Output: defensive quantization table Q

1 Q0 = O8×8;
2 for Ii in In do
3 for Ii,channel in Ii do
4 x0 = 0, y0 = 0;
5 nw = w/8, nh = h/8;
6 GI i = {(xm, yn)|(m,n) ∈

{(0, ..., nw)× (0, ..., nh)}};
7 for (xm, yn) in GI i\{(x0, y0)} do
8 dctI = DCT (Ii,channel(xm−1 : xm, yn−1 :

yn));
9 dctAdv = DCT (İi,channel(xm−1 :

xm, yn−1 : yn));
10 difmat = |dctI − dctAdv|;

xQ, yQ = argmax(difmat);
11 Q0(xQ, yQ)+ = 1;
12 end
13 end
14 end
15 Q = (Q0/max(Q0))× 80 + 20;
16 return Q;

Step 2: Image Distortion373

Lines 10-20 in Algorithm 1 illustrate the second step of our374

method. First, one of the four corners of the input image375

is randomly selected as a starting point, (e.g. the upper-left376

corner in Line 10). The original image is a randomly dis-377

torted grid by grid. For each grid, it will be either stretched or378

compressed based on a distortion level sampled from a uni-379

form distribution U(−δ, δ) (Lines 11-12). Distorted grids are380

then remapped to construct a new image (Lines 13-14). This381

remapping process will drop certain pixels: the compressed382

grids will drop rows or columns of data; the stretched grids383

will cause the new image to exceed the original boundary,384

thus the pixels mapped outside of the original boundary will385

be dropped. For instance, in Fig. 2, the grid at the lower-right386

corner in stage 3 is dropped in stage 4. Then, the distorted387

image is reshaped to the size of the original image by crop-388

ping or padding (Line 18).389

This step can drop a certain ratio of pixels and change a390

huge number of pixel coordinates. In our experiments, the391

distortion limit δ is set as 0.25. In the ImageNet dataset, each392

image will have around 20%-30% pixels randomly dropped393

and more than 90% pixel coordinates changed each time after394

such preprocessing operation. This can guarantee high ran-395

domness and improve the difficulty of approximation with396

differentiable functions, while the model can still give cor-397

rect predictions.398

Security Analysis399

Our preprocessing function can satisfy the three require-400

ments, with the following quantitative justification.401

For usability-preserving, we measure the prediction accu-402

racy of clean samples for f(g(x)). Table 1 compares our so-403

lution with prior methods. We can observe all the methods404

can maintain very high model accuracy (ACC). For Property 405

2, our solution introduces defensive quantization, which is 406

non-differentiable. 407

For Property 3, we measure the uncertainty of the pre- 408

processed output to reflect the difficulty of approximation. 409

Specifically, given one image, we use g(·) to preprocess it 410

for 100 times, and randomly select 2 outputs. We use l2 norm 411

and Structural Similarity (SSIM) score (Hore and Ziou 2010) 412

to measure the variance between these two output images. 413

Note that a larger l2 norm or smaller SSIM score indicates 414

a larger variance between the two images. When l2 norm is 415

0 or SSIM is 1, the output images are identical and the pre- 416

processing function is deterministic. For each preprocessing 417

function, we repeat the above process with 1000 randomly 418

selected input images from the ImageNet dataset. The aver- 419

age SSIM score and l2 norm are listed in Table 1. Our method 420

can outperform other defenses with a larger l2 norm and 421

smaller SSIM. This indicates that our preprocessing function 422

can introduce the highest randomness to the output, as well 423

as the highest difficulty for the adversary to approximate it 424

with differentiable functions. 425

Defense l2 SSIM ACC
Our method 0.22 0.30 0.95

Rand (Xie et al. 2018) 0.21 0.31 0.96
FD (Liu et al. 2019) 0.00 1.00 0.97

SHIELD (Das et al. 2018) 0.03 0.88 0.94
TV (Guo et al. 2018) 0.02 0.97 0.95

BdR (Xu, Evans, and Qi 2018) 0.00 1.00 0.92
PD (Prakash et al. 2018) 0.02 0.98 0.97

Table 1: Quantitive measurement of variance of output im-
ages introduced by various kinds of defenses.

Evaluation 426

Implementation 427

Configurations. We adopt Tensorflow as the DL framework 428

for implementation. The learning rate of BPDA is 0.1 and 429

the ensemble size2 of EOT is 30. All experiments were con- 430

ducted on a server equipped with 8 Intel I7-7700k CPUs and 431

4 NVIDIA GeForce GTX 1080 Ti GPUs. 432

Target Model and Dataset. Our designed method is gen- 433

eral and can be applied to various DNN models for image 434

preprocessing. We choose a pre-trained Inception V3 model 435

(Szegedy et al. 2016) over the ImageNet dataset in this paper. 436

This state-of-the-art model can reach 78.0% top-1 and 93.9% 437

top-5 accuracy. We randomly select 100 images from the Im- 438

ageNet Validation dataset for AE generation. These images 439

can be predicted correctly by this Inception V3 model. 440

Metrics. We use the l2 norm to measure the size of perturba- 441

tions generated by each attack. We only accept AEs with a l2 442

norm smaller than 0.05. We consider the targeted attacks that 443

the target label is randomly generated to be different from the 444

correct one (Athalye, Carlini, and Wagner 2018). As BPDA 445

2We tested different ensemble sizes for EOT ranging from 2 to
40. The ensemble size has little influence on ASR or ACC. With a
larger ensemble size, it is possible to generate AEs with smaller l2.



Figure 2: Processing stages in the image distortion step.

and EOT are iterative processes, we stop the attack when an446

AE is successfully generated (predicted as the target label447

with l2 smaller than 0.05). For each round of the attack, we448

measure the prediction accuracy of the generated AEs (ACC)449

and the attack success rate (ASR) for the targeted attack.450

Figure 3: Defense results on BPDA: ACC (a) and ASR (b)
and defense results on BPDA+EOT: ACC (c) and ASR (d).

Mitigating BPDA Attack451

We first evaluate our method against BPDA. For comparison,452

we re-implemented 7 prior solutions including FD (Liu et al.453

2019), Rand (Xie et al. 2018), SHIELD (Das et al. 2018),454

TV (Guo et al. 2018), JPEG (Guo et al. 2018), BdR (Xu,455

Evans, and Qi 2018), and PD (Prakash et al. 2018). We select456

these methods because they are all preprocessing-only de-457

fense which fits our defense requirements. We give a broader458

comparison with the defenses that need to alter the target459

model in Table 2 at the end of this section. Fig. 3 (a) and460

(b) give the ACC and ASR versus the perturbation rounds.461

After 50 attack rounds, the ACC of all the previous solu- 462

tions except FD drops below 5%, and the corresponding ASR 463

reaches higher than 90%. FD can keep the ASR lower than 464

20% and the ACC around 40%, which is still not very effec- 465

tive in defending against BPDA. However, our method is par- 466

ticularly effective against the BPDA attack. We can maintain 467

an acceptable ACC (around 70% for 50 attack rounds), and 468

restrict the ASR to almost 0. RAND can also defeat BPDA 469

with a slightly lower ACC than ours. However, it will be bro- 470

ken by the EOT attack, as we will show later. These results 471

are consistent with the l2 norm and SSIM metrics in Table 1: 472

the randomization in those operations causes large variances 473

for one image each time during inference which significantly 474

increase the difficulty for attackers to generate AEs. 475

We continue the attack until the images with perturbations 476

reach the l2 bound (0.05). For our method, the adversary 477

needs 231 rounds to reach this l2 bound with ACC of 57% 478

and ASR of 2%. Therefore, we conclude that our solutions 479

can effectively mitigate the BPDA attack. 480

Mitigating BPDA+EOT Attack 481

Next, we consider a more powerful attack by combining 482

BPDA and EOT (Tramer et al. 2020) which can defeat both 483

shatter gradients and stochastic gradients based defenses. 484

Here we only consider defense methods that can mitigate the 485

BPDA attack. This gives us two baselines: Rand and Ran- 486

dom Crop3 (Guo et al. 2018). Fig. 3 (c) and (d) report ACC 487

and ASR under BPDA+EOT attack. 488

We can observe both Rand and Random Crop fail to mit- 489

igate this strong attack: ACC drops to below 20% after 20 490

rounds, and ASR reaches 100% after 50 rounds. In contrast, 491

our solution can still hold ACC of around 60% and ASR of 492

less than 10% after 50 attack rounds. These results confirm 493

our claims and the effectiveness of our method. 494

We continue the attacks until the images with adversarial 495

perturbations reach the l2 bound (0.05) and our method can 496

maintain the ACC to 58% and keep the ASR to 7%. 497

Mitigating Adaptive BPDA Attack 498

In previous implementation of BPDA attack, we use a naive 499

identity function (g(x) ≈ x) to approximate the preprocess- 500

ing function following (Athalye, Carlini, and Wagner 2018). 501

3Random Crop are not considered in the previous subsection due
to its low model usability (30%-40% ACC drop).



Solutions Requirement Attack #1 #2 #3 l∞ = 0.031 l2 = 0.05

Rand (Xie et al. 2018) ♦ EOT X X 0% -
PixelDefend (Song et al. 2017) ♦,4 BPDA X X 9% -

Crop (Guo et al. 2018) ♦,4 BPDA+EOT X - 0%
JPEG (Guo et al. 2018) ♦,4 BPDA X X - 0%
TV (Guo et al. 2018) ♦,4 BPDA+EOT X X - 0%

Quilting (Guo et al. 2018) ♦,4 BPDA+EOT X X - 0%
SHIELD (Das et al. 2018) ♦,4 BPDA X X - 0%
PD (Prakash et al. 2018) ♦ BPDA X X 0% -

Guided Denoiser (Liao et al. 2018) ♦ BPDA X X - 0%
ME-Net (Yang et al. 2019) �, ♦,4 BPDA+EOT X X 13% -

FD (Liu et al. 2019) ♦ BPDA X X - 10%
Our method ♦ BPDA+EOT X X X - 58%

Table 2: Comparisons with a broader defenses on bounded attacks. (For defense requirements, �: target model modification;
♦: input preprocessing; and4: adversarial training).

Figure 4: (a) Original image I0. (b) Image produced by our
method I1, (c) Image produced by the approximated neural
network I2. ‖I1 − I2‖2 = 0.22, ‖I1 − I2‖SSIM = 0.35.

However, the adversary can improve the attacks by approxi-502

mating the transformation with a neural network (Raff et al.503

2019). Thus, we adopt this adaptive BPDA attack to eval-504

uate our defense method. We use a 6-layer DenseNet auto-505

encoder (same approximation attack method as (Raff et al.506

2019)) to evaluate our method.507

The result is that the attacker cannot find a proper approx-508

imation with such an attack. One example is shown in Fig. 4:509

the approximated image (c) has a large variance compared510

with the image preprocessed by our method (b) with l2 norm511

as 0.22 and SSIM score as 0.35. Thus, such approximation512

cannot give a useful gradient to generate a successful AE.513

We run the end-to-end attack with the trained neural net-514

work on 100 images randomly selected from ImageNet and515

the ASR is 0 under a maximum l2 norm of 0.05. The average516

quantitative variance between the approximated image and517

the image processed by our method for the 100 images is as518

follows: l2 norm is 0.16 and the SSIM score is 0.36.519

Mitigating Standard Attacks520

We also test our method against standard attacks (I-FGSM,521

LBFGS, and C&W). The results are shown in Table 3. Our522

solution has little influence on the ACC of benign samples.523

The ASR of those attacks can be kept as 0% and ACC can be524

maintained as around 90%. More details and results can be525

found in the supplementary material.526

Attack l2
No Defense Our method

ACC ASR ACC ASR
No attack 0.0 100% Nan 95% Nan
I-FGSM 0.010 2% 95% 93% 0%
LBFGS 0.001 0% 100% 91% 0%
C&W 0.016 0% 100% 87% 0%

Table 3: Results of our defenses against standard attacks.

A Broader Comparison with More Defenses 527

We compare our solution with a broader set of defenses 528

against bounded attacks. These methods also adopt prepro- 529

cessing while some of them require model changes, e.g., 530

model retraining (ME-Net) or adversarial training (Crop, 531

JPEG, TV, Quilting, and ME-Net). These methods were 532

proved to be broken partially or entirely by BPDA or 533

BPDA+EOT in (Carlini et al. 2019). 534

We summarize the analytic results, experimental data as 535

well as conclusions from literature in Table 2. The AE gener- 536

ation is either bounded by l∞ (0.031) or l2 (0.05). Even com- 537

bined with adversarial training, most of them cannot provide 538

enough robustness. We can observe that our method shows 539

much better robustness against BPDA+EOT (ACC is as high 540

as 58% under the l2 bound). We also reveal the satisfactory 541

of the three properties (#1 to #3 in Table 2) of those methods. 542

All the defenses in Table 2 can satisfy only part of the prop- 543

erties. Note that ME-Net meets properties #2 and #3 but not 544

#1, as it retrains the model with preprocessed clean samples. 545

We conclude that our three properties are indeed an accurate 546

indicator to reveal the difficulty of adversarial attacks. 547

Conclusion 548

We propose a novel and efficient preprocessing-based so- 549

lution to mitigate advanced gradient-based adversarial at- 550

tacks (BPDA, EOT, their combination, and adaptive attacks). 551

Specifically, we first identify three properties to reveal possi- 552

ble defense opportunities. Following these properties, we de- 553

sign a preprocessing transformation function to enhance the 554

robustness of the target model. We comprehensively evalu- 555

ate our solution and compare it with 11 state-of-the-art prior 556



defenses. Empirical results indicate that our solution has the557

best performance in mitigating all these advanced gradient-558

based adversarial attacks.559

We expect that our solution can heat the arms race of560

adversarial attacks and defenses, and contribute to the de-561

fender’s side. The proposed three properties can inspire peo-562

ple to come up with better defenses. Meanwhile, we expect563

to see more sophisticated attacks that can fully tackle our de-564

fenses in the near future. All these efforts can advance the565

study and understanding of AEs and DL model robustness.566
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